Skip to content
PrimateFace Logo

PrimateFace

Cross-Species Primate Face Detection and Landmark Analysis

PrimateFace is an open-source toolkit for automated facial analysis across primate species. It provides pretrained models, datasets, and tools for face detection, landmark localization, and behavioral analysis in humans and non-human primates.

PrimateFace Overview

Quick Start

# 1. Create conda environment
conda env create -f environment.yml
conda activate primateface

# 2. Install PyTorch for your system
# Check your CUDA version: nvcc --version
uv pip install torch==2.1.0 torchvision==0.16.0 --index-url https://download.pytorch.org/whl/cu118

# 3. Install optional modules
uv pip install -e ".[dinov2,gui,dev]"

# 4. Test with demo
python demos/download_models.py
python demos/primateface_demo.py process --input ateles_000003.jpeg \
    --det-config mmdet_config.py --det-checkpoint mmdet_checkpoint.pth

Getting Started

Installation

See our detailed installation guide or use the quick install above.

First Steps

  1. Try the demos → Quick inference guide
  2. Explore notebooks → Interactive tutorials
  3. Choose your workflow → Decision tree
  4. Read the paper → Scientific background

Project Components

Dataset

Comprehensive primate face dataset with annotations. - 68-point facial landmarks - 49-point simplified annotations - Bounding boxes and species labels

Models

Pretrained models optimized for primates. - Face detection (MMDetection, Ultralytics) - Pose estimation (MMPose, DeepLabCut, SLEAP) - Species classification (VLMs) - Landmark converters

Documentation

📚 Getting Started

🎓 Tutorials

Interactive notebooks demonstrating applications: - Lemur face visibility time-stamping - Macaque face recognition - Howler vocal-motor coupling - Gaze following analysis

📖 User Guide

Core Workflows

Framework Integration

Utilities

Concepts

  • Facial landmarks (68-point vs 48-point)
  • DINOv2 features explained
  • Evaluation metrics

🔧 API Reference

📊 Data & Models

  • Pretrained model downloads
  • Dataset specifications
  • COCO format guide

🛠️ Troubleshooting

  • Common issues and solutions
  • Performance optimization

🤝 Contributing

  • Submit your primate images
  • Contribute to the dataset

Community

Get Help

For pressing questions or collaborations, reach out via:

Resources

Citation

If you use PrimateFace in your research, please cite:

Parodi et al., 2025

@article{parodi2025primateface,
  title={PrimateFace: A Machine Learning Resource for Automated Face Analysis in Human and Non-human Primates},
  author={Parodi, Felipe and Matelsky, Jordan and Lamacchia, Alessandro and Segado, Melanie and Jiang, Yaoguang and Regla-Vargas, Alejandra and Sofi, Liala and Kimock, Clare and Waller, Bridget M and Platt, Michael and Kording, Konrad P},
  journal={bioRxiv},
  pages={2025--08},
  year={2025},
  publisher={Cold Spring Harbor Laboratory}
}

License

This project is released under the MIT License for research purposes.


GitHubWebsitePaperDatasetModels