Models¶
Pretrained Models¶
Access our pretrained models optimized for primate facial detection and landmark analysis.
Currently Available Models¶
Download our models using the provided script:
This downloads: - Cascade R-CNN - Face detection model (~300MB) - HRNet-W32 - 68-point landmark detection (~110MB) - Configuration files for both models
Model Performance¶
Model | Task | Performance | Framework |
---|---|---|---|
Cascade R-CNN | Face Detection | ~95% mAP | MMDetection |
HRNet-W32 | Landmark Detection | <5% NME | MMPose |
Performance measured on primate face validation set.
Quick Start¶
Download Models¶
# Download to demos directory
cd demos
python download_models.py
# Or specify custom directory
python download_models.py /path/to/models/
Basic Usage¶
from demos.process import PrimateFaceProcessor
# Initialize with downloaded models
processor = PrimateFaceProcessor(
det_config="demos/mmdet_config.py",
det_checkpoint="demos/mmdet_checkpoint.pth",
pose_config="demos/mmpose_config.py",
pose_checkpoint="demos/mmpose_checkpoint.pth",
device="cuda:0"
)
# Process image
import cv2
image = cv2.imread("primate.jpg")
bboxes, scores = processor.detect_primates(image)
Coming Soon¶
Additional Models¶
- YOLOv8-Face - Ultralytics real-time detection
- Landmark Converters - 68→48 point conversion models
- Species Classifiers - Genus/species identification
Model Zoo Features¶
- HuggingFace integration
- Direct download links
- Model cards with detailed metrics
- ONNX export for deployment
Training Custom Models¶
Using Your Data¶
Train on your own annotations:
# Detection model
python evals/train_detection.py \
--config configs/custom_detection.py \
--data your_coco_annotations.json
# Pose model
python evals/train_pose.py \
--config configs/custom_pose.py \
--data your_coco_annotations.json
Framework Options¶
We support training with multiple frameworks: - MMDetection/MMPose - Primary framework - DeepLabCut - Direct COCO training - SLEAP - Multi-animal support - Ultralytics - Real-time models
See Framework Integration for details.
Model Architecture¶
Detection Model¶
- Architecture: Cascade R-CNN
- Backbone: ResNet-50-FPN
- Input Size: 800×800
- Classes: 1 (primate_face)
Pose Model¶
- Architecture: HRNet-W32
- Input Size: 256×192
- Output: 68 facial landmarks
- Heatmap Resolution: 64×48
License¶
Models and code are released under the MIT License for research purposes.
Citation¶
If you use our models, please cite:
@article{parodi2025primateface,
title={PrimateFace: A Machine Learning Resource for Automated Face Analysis in Human and Non-human Primates},
author={Parodi, Felipe and Matelsky, Jordan and Lamacchia, Alessandro and others},
journal={bioRxiv},
year={2025},
publisher={Cold Spring Harbor Laboratory}
}
Contact¶
For questions about models or early access to additional models: - Email: primateface@gmail.com - GitHub: Issues